

Formulario de Aprobación Curso de Actualización 2015

Asignatura: Circuitos de Radiofrecuencia

(Si el nombre contiene siglas deberán ser aclaradas)

Profesor de la asignatura 1:

(título, nombre, grado o cargo, Instituto o Institución)

Dr. Ing. Fernando Silveira, G5, RDT - Instituto de Ingeniería Eléctrica, Dpto. de Electrónica

Dr. Ing. Leonardo Barboni, G3, RDT - Instituto de Ingeniería Eléctrica, Dpto. de Electrónica

Profesor Responsable Local 1:

(título, nombre, grado, Instituto)

Otros docentes de la Facultad:

(título, nombre, grado, Instituto)

Ing. Gonzalo Gutiérrez, G1 - Instituto de Ingeniería Eléctrica, Dpto. de Telecomunicaciones

Docentes fuera de Facultad:

(título, nombre, cargo, Institución, país)

Instituto ó Unidad:

IIE

Departamento ó Area:

Departamento de Electrónica

Agregar CV si el curso se dicta por primera vez.
(Si el profesor de la asignatura no es docente de la Facultad se deberá designar un responsable local)

Fecha de inicio y finalización:

segundo semestre

Horario y Salón: (se fija con los estudiantes en reunión inicial)

Horas presenciales: 32

(se deberán discriminar las mismas en el ítem Metodología de enseñanza)

Arancel:

2918 UI

Público objetivo y Cupos:

Profesionales en general y alumnos de Maestría y Doctorado, con título de Ingenieros Electricistas, Electrónicos, Telecomunicaciones o formación equivalente.

Mínimo: 5; Máximo: 20.

Objetivos:

Introducir al estudiante algunos de los conceptos, componentes y técnicas de diseño usados en circuitos de radio frecuencia y microondas. Al finalizar el curso, el estudiante debería ser capaz de lo siguiente:

- •Entender las particularidades de los circuitos de radio frecuencia y sistemas con parámetros distribuidos.
- •Resolver circuitos con líneas de transmisión analíticamente y usando la Carta de Smith
- •Diseñar redes de adaptación reactivas combinando elementos concentrados y líneas de transmisión
- •Usar parámetros S para el análisis de circuitos
- •Calcular ruido en una cascada de bloques con 2 puertos
- •Definir parámetros importantes usados para caracterizar amplificadores
- •Diseñar amplificadores simples
- •Manejar alguna herramienta de software para verificar diseños manuales

Facultad de Ingeniería Comisión Académica de Posgrado

Conocimientos previos exigidos: Cursos básicos se teoría de circuitos y sistemas y electrónica, equivalentes a los actuales cursos de Sistemas Lineales 2 y Electrónica 1 de Facultad de Ingeniería.

Conocimientos previos recomendados: Teoría de circuitos, Electromagnetismo, Electrónica básica

Metodología de enseñanza:

(comprende una descripción de las horas dedicadas por el estudiante a la asignatura y su distribución en horas presenciales -de clase práctica, teórico, laboratorio, consulta, etc.- y no presenciales de trabajo personal del estudiante)

El curso tiene una carga horaria como se detalla Se aprueba con la entregas de ejercicios, la realización de un trabajo final de curso y la aprobación de una instancia de defensa individual de las actividades realizadas. Semanas presenciales de clase: 7

•Horas clase (teórico):

32

Horas clase (práctico):

0 (se incluyen en las horas de teórico)

•Horas clase (laboratorio): 0 (se incluye demostración en laboratorio en las horas de teórico)

Horas consulta:

0

Horas evaluación:

Subtotal horas presenciales: 32

•Horas estudio:

Horas resolución ejercicios/prácticos:

Horas proyecto final/monografía: 56

oTotal de horas de dedicación del estudiante: 120

Forma de evaluación:

El curso se aprueba con la entrega de ejercicios, la realización de un trabajo final de curso (cuya documentación el estudiante deberá entregar) y la aprobación de una instancia de defensa individual de las actividades realizadas. El curso se aprueba exclusivamente por exoneración no existiendo acto de examen. En base a las calificaciones recibidas en los ejercicios entregados durante el curso y en trabajo final y a su desempeño en la instancia de defensa, el estudiante podrá reprobar la asignatura (nota 0) o aprobar la asignatura (nota 3 a 12).

Temario:

- 1- Líneas de Transmisión. Diagrama Smith
- 2- Análisis de Redes de Microondas, Parámetros S.
- 3- Adaptación de Impedancias.
- 4- Ruido y Distorsión
- 5- Componentes de RF
- 6- Amplificadores.

Facultad de Ingeniería Comisión Académica de Posgrado

Bibliografía:

(título del libro-nombre del autor-editorial-ISBN-fecha de edición)

- [1] Libro del Curso: David M. Pozar, *Microwave Engineering* Ed. John Wiley & Son (referencia a capitulos en Anexo en base a 3ra Ed. 2005).
- [2] Referencia: Chris Bowick: RF Circuit Design, Ed Newnes, 1ra Ed. 1982, 2da Ed. 2007

Anexo:

1) Cronograma

Semana 1	Repaso de Electromagnetismo y Líneas de Transmisión.			
Referencia	Capítulo 1-2 del libro			
Temas y Activ	vidades	Clase 1	Revision ecs. de Maxwell. Efecto Skin.	
		Clase 2	Ecuaciones de Líneas sin perdidas. Solución estacionaria. Coeficiente de reflexión, return loss, SWR, insertion loss. Potencias transmitida por la línea. Ejemplos.	

Semana 2	Líneas	de Transmi	isión.
Referencia	Capítulo 2-3 del libro		
Temas y Activ	ridades	Clase 3	Líneas con Perdidas (atenuación). Diagrama de Smith. Condición de adaptación de impedancias. Transformacion de impedancias. Ejemplos (cuarto de onda)
		Clase 4	Diagrama de Smith (continuación de la clase 4) Tipos de líneas de transmisión y guias de ondas Ejemplos.

Semana 3	Guias de Ondas.	
Referencia	Capítulo 3 del lib	ro
Temas y Activ	vidades Clase 5	Cable coaxial como ejemplo de propagación TEM. Striplines. Microstrip (propagación, impedancia y atenuación).
	Clase 6	Striplines. Microstrips (cont.). Introducción a un simulador.

Semana 4	Análisis de Redes de Microondas		
Referencia	Capítulo 4 del libro		
Temas y Activ	vidades Clase 7 Parámetros S, Y, S generalizados. Matrices S.		
	Clase 8 (VNA) Vector Network Analyzer (teoria y demostración en laboratorio)		

Semana 5	Matching de Impedancias . Ruido		
Referencia Capítulo 5 -10 del libro		libro	
Temas y Activ	idades	Clase 9	Teoria y Ejercicios (analticos y con Carta de Smith)
		Clase 10	Fuentes de ruido. Potencia de Ruido. Temperatura de Ruido. Figura de Ruido

Semana 6	Ruido y Distorsión.
Referencia	Capítulo 10 del libro
Temas y Activi	idades Clase 11 Cont. de Figura de Ruido. Distorsión no lineal.

1-11-11

Facultad de Ingeniería Comisión Académica de Posgrado

	Distorsion no lineal: parámetros: IM3, IIP3, OIP3, punto de compresión a 1dB,.
	rango dinámico.

Semana 7	Componentes de RF. Amplificadores. Capítulo 10 - 11 del libro		
Referencia			
Temas y Activ	vidades Clase 13	Componentes de RF y microondas activos y pasivos.	
Barrier and State of	Clase 14	Amplificadores. Ganancia. Estabilidad	

Semana 8	Amplif	Amplificadores (Cont.)			
Referencia	Capítulo 11 del libro				
Temas y Activ	idades	Clase 15	Amplificadores		
		Clase 16	Amplificadores		